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An Inequality About Factors of Polynomials 

By M. Mignotte 

Abstract. A sharp inequality is proved about the product of some roots of a polynom- 
ial. It is used to bound the height of the factors of a polynomial. Applications are 
given to the problem of factorization and numerical examples show that these bounds 
strongly improve the previous ones. 

I. Introduction. If R = Si0 XcIX is a polynomial with complex coefficients, 
we put 

1JR11 = (lcjl2 )1/2, L(R) = ,lcj1, H(R) =-max ljcl. 

We shall first prove: 
THEOREM 1. Let P= Z4 a X' be a polynomial with complex coefficients. 

Let z1, Z2, * *, zk be those zeros of P (counted with their multiplicities), such 
that I < lZlI < IZ21 <** <- Zkl Then 

k 

lad I I Zil <I ? lPil 
i= 1 

This inequality improves a result of Mahler [1] who obtained L(P) instead of 
jjPIj on the right-hand side. 

THEOREM 2. Let Q be a polynomial with rational integer coefficients. If 

Qi ... QmR = Q, where Q1, * * * Qm' R are polynomials with rational integer 
coefficients, then 

m m 
(1) JjJL(Q1)<2DIIQIl, where D= deg(Q1), 

j=1 j=l 

and, if for example Q1 = bo + b jX + * * * + b 1X1, then 

(2) IbjI E ?Z 01. 

(This result also holds for Gaussian integer coefficients.) 
These inequalities can be used in the theory of transcendental numbers, but we 
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shall not speak of this here. They are also useful in the problem of factorization of 
polynomials over Z as we shall see now. 

We recall the method of H. Zassenhaus [3]. Put 

F(X)=Xn + aXn- +? +?a, a.CZ 

and assume that 

G(X) = Xm + blXm-l + + bm, bi E Z, m < n/2, 

is a factor of F. 
Suppose that we find M such that for any such G we have H(G) < M. We 

take a prime number p, not dividing the disctiminant of F, and choose r such that 

Pr > 2M. Then, starting with a factorization into monic polynomials 

FF1 * * Fk (mod p), 

we get, with the help of Hensel's lemma, well-defined Fj 
E Z(X) such that 

F -F, ... Fk (mod pr), with Fj F1 (mod p), i = 1,*** 

and such that the coefficients of the F1 belong to the interval ] - pr/2, prI2]. 
It is now clear that we are able to factorize F over Z. The problem is now to 

find a value for M. 
Zassenhaus remarked that, if jzj < A for any root z of F, then 

lb l< m) Ai. 

It is well known that we can take 

(3) A = max lail + 1. 

Zassenhauss also used the bound 

(4) A= max 
la 
(il (21 In -1). 

To show the strength of (2), we take two examples given in [4] to compare (3) and (4). 
Put 

F1(X) = X15 + 30X14 + 5X13 + 2X12 + 5X + 2, 

and 

F2(X) = X8 + 8X7 + 21X6 + 21X5 + 42X4 + 13X3 + 12X2 - 14X + 12. 

For F1, we get 
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M1 < 2.8 * 1010 by (3), 

M1 < 2.7 * 109 by (4), 

and, for F2, 

M2 <3.5. 106 by(3), 

M2 < 1.4 * 105 by (4); 

whereas (2) gives 

M1 < 1083 and M2 < 348. 

(In fact, F1 is irreducible: Rouche's theorem shows that all its roots but one lie in the 
disk IzI < 1.) 

II. Proof of Theorem 1. A proof can be found in [2], but we prefer to deduce 
it from the following elementary lemma which gives a stronger result. 

LEMMA 1. Let P(X) be a polynomial with complex coefficients and ae be a 
nonzero complex number. Then 

II(X + oa)P(X)II = I aI II(X + &'-)P(X)II. 

Proof. Write 

m 
P(X) = akX, 

k=O 

m+1 
Q(X) (X + A)P(X)= E (ak- 1 + aak)Xk, 

k=O 

m+ 1 
R(X) (X + Zi7')P(X) = E (ak-1 + cx-lak)X, 

k=O 

with a-1 =am+l 0= 

Then 

m+1 m+l _ 

IIQI12 E Iak-l + aakl2 =E (ak-1 + cak)(ak-l + oak) 
k-O k=O 

which expands to 

m + 1 
E (Iak- 1 I+ akakl ? 1 oak k-lk + lot lakI). 

k=O 

Expanding la 121JR112 yields the same sum. 
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Thus we have IIQII = la I IIRII, which proves the lemma. 
LEMMA 2. Let xX, X2, , Xm be complex numbers, 

0 < |x I <- < lxql < 1 < lxq+1l I * < lxm 1 q > 0 

Put 

S()= (X-xi) 
.. (X xm), 

T(X) = (X - - 1 1) ***(X-x-q- 1 ) (X-Xq + 1 ) ... (X -Xm ) 

Then 

(5) IISII = lXi * Xq lI T11. 

Proof. By induction on q. For q = 0, (5) holds. Assume q > 0 and put 

S(X) = S(X)/(X - xi), T(X) = T(X)/(X - Y- 

Then 

IISII = ll(X-x1)S(X)II = IxI ll(X-x-7 1)S(X)hl (by Lemma 1) 

= 1x1 Ix2 ... Xql II(X --1 1)T(X)hl (by induction hypothesis) 

= lx. x I JITII. q 

This implies the following refinement of Theorem 1. 
PROPOSITION. Let P(X) = amXm + + ao = am (X - x1i) *** (X-xm) where 

Xi, Xm are complex numbers such that 

lxl < < Ixq I < 1 <x l~+ 1 * * * < I xm q > ?. 

Then 

hlPlI2 > lam 12lXq+1 *. Xml2 + la0121Xq+1 *. Xm l2. 

Proof. Put 

q m 
Q(X) = am t H(X-T1) fl (XXi) bmXm + + bO 

i=1 i=q+1 

First assume x1 k 0. Then by Lemma 2, IIPII = 1x1 * xq I 1Q11, hence 

llpl12 > IX. xqqI2(IbmI2 + lbo 2), 

from which the result follows. 
If xi = * * * = Xn = O (n < q), then ao = 0, so we just have to prove 

1IPI12 > lam 12 IXq+1 xm 12. But, in fact, replacing P(X) by P(X)IXn in the 
above argument yields the stronger result 
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11pll2 > lam 12 IXq +1 * * * Xm I2 + lanI2 lXq+1 * * * Xm I2X 

Remarks. (1) The proof of Theorem 1 is quite elementary while the previous 
inequalities were weaker and based on transcendental results such as Jensen's or 
Parseval's formula. We leave an analytic proof of Lemma 2 as exercise to the 
reader. 

(2) In a certain sense, Theorem 1 is the best possible: the inequality is not al- 
ways true if we replace IIPiI by (Ilale)lle for e > 2. (Take for example P(X) = 

x2 - 2aX - 1 where a is a sufficiently large positive number.) 

III. Proof of Theorem 2. The well-known expression of the coefficients of a 
polynomial gives: 

LEMMA 3. Let P be as in Theorem 1. Then 

lail < .z . Zk1 ladle, 

and 

d 

E: lail < 2dlZl ..Zkl ladl- 
i=O 

The theorem follows easily from Lemma 3 and Theorem 1. 
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